Course code	Course Name	L-T-P - Credits	Year of Introduction
RLMCA268	Computational Science	3-1-0-4	2016

Course Objectives

• To impart theoretical and practical knowledge concerning numerical methods for scientific and engineering computations

Syllabus

Numerical Calculations- Numerical Solution Of Non Linear Equations- Gauss Elimination Method- Lagrange's Interpolation Polynomial- Mathematical Formulation Of Linear Programming problem- Standard Form of LPP- Transportation Problem-Network Scheduling

Expected Outcome

The students will be

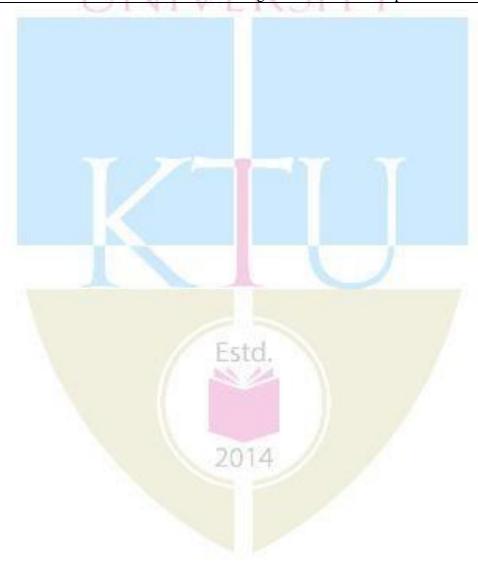
- i. Able to describe and interpret basic field problems and explain how they can be solved numerically.
- ii. Able to compare and contrast different time stepping schemes for time dependent problems.

References

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, New Age International (p) Limited
- 2. Froberg, Introduction to Numerical Analysis-Second Edition, Addition Wesley
- 3. Kanthi Swarup, P.K.Gupta, Man Mohan, "Operations research," Sultan Chand & Sons. 5th Edition
- 4. R Panneerselvam Operations research, 2nd edition, PHI
- 5. Sastry S.S., "Numerical Analysis, Prentice"-Hall India, 4th edition.

	Course Plan						
Module	Contents	Hours	Sem. Exam Marks				
I	Errors In Numerical Calculations - Errors and their computation. Solution of algebraic and Transcendental Equations - Bisection Method -Regula Falsi Method - Iteration Method - Acceleration of convergence-Newton Raphson Method.	10	20%				
II	Solution of linear systems – Introduction - Direct methods - Gauss Elimination Method -Gauss Jordan Method, Iterative Method -Jacobian Method - Gauss Seidel Method.	10	15%				
FIRST INTERNAL EXAMINATION							
Ш	Polynomial Interpolation-Introduction —Errors - Finite Difference - Difference Operators- Newtons Forward and Backward Difference Interpolation - Central Difference Interpolation Formulae - Gauss Interpolation Formulae. Interpolation with unevenly spaced points - Lagrange's Interpolation - Divided Differences - Newton's Divided Difference Interpolation	12	20%				
IV	Mathematical Formulation Of Linear Programming problem- Formulation Of LPP-Graphical Solution Of LPP – Canonical And Standard Form of LPP- Simplex Method-Big M Method- Two Phase Method- Principle Of duality- Dual Simplex Method	8	15%				
v	Transportation type Problem- Initial Basic Feasible Solution-North West Corner Rule-Vogel's Approximation Method – Tests For Optimality- Unbalanced Transportation Problem-Assignment Problem.	8	15%				

	SECOND INTERNAL EXAMINATION				
VI	Travelling Salesman Problem-Network Scheduling-Rules of Network Construction – Critical Path Method-PERT.	8	15%		
END SEMESTER EXAM					
OFFICER OF BARBERS					


QUESTION PAPER PATTERN

There will be two parts in the Question paper - Part A and Part B.

Part A will have 8 short answer questions of 3 marks each (8 X 3 M = 24 M). There will be no choice questions.

Part B will have 6 essay questions one from each module of 6 marks each, with an alternative choice question from the same module (6 x 6M=36M). The maximum number of sub part questions in **Part B** to be limited to 2.

The total marks assigned to questions in Part A (Short answer) and Part B (Essay) together from a single module will not exceed the marks assigned to that module specified in the course plan.

