Course code	Course Name	L-T-P - Credits	Year of Introduction
RLMCA108	OPERATIONS RESEARCH	3-1-0-4	2016

Course Objectives

- To introduce Operations research as a tool used to solve decision making problems in a wide range of areas.
- To impart different modeling techniques of real world problems and the various optimization techniques for solving these models.

Syllabus

Linear Programming model and various methods for solving the models- The transportation and assignment problems - Probabilistic models - game theory and queuing theory. Simulation models - the virtual running of a real world problem.

Expected Outcome

The students will be able to

- i. Construct a mathematical model of a real world problem which has many alternative solutions which makes the decision maker unable to take a decision.
- ii. Learn about various optimization methods that are employed to solve these mathematical models to find a solution which is in the best interest of the decision maker.

References

- 1. Hamdy A.Taha, "Operations Research-An Introduction", Prentice Hall of India
- 2. Kanti Swarup, P.K.Gupta and Man Mohan "Operations Research", Sultan Chand (2010).
- 3. Ravindran, Philips and Solberg, Wiley., "Operations Research", Second edition (2007), Wiley.

	Course Plan					
Module	Contents	Hours	Sem. Exam Marks			
I	Introduction to O.R-Modeling in O.R -Solution methods for O.R- Methodology of O.R Linear Programming Problem-Formulation-Graphical method-Simplex method-Big M method-Two phase method.	8	15%			
п	Duality in LPP-Statement of Duality theorems-Statement of complementary slackness theorem Solving LPP using duality-Dual simplex method.	9	15%			
	FIRST INTERNAL EXAMINATION					
III	Transportation problem-Methods to find initial basic feasible solution-Northwest corner rule-Matrix minima method-Vogel's Approximation method. Solving a TP -MODI method -Degeneracy in TP-Unbalanced TP-Maximization in TP Assignment problem-Hungarian method of assignment-Maximization in assignment problem.	9	15%			
IV	Game Theory-Two person zero sum game-Basic notions-saddle point-Maximin-Minimax principle. Games without saddle point-Mixed strategies-Algebraic method for solving two person zero sum game-Graphical method for 2xn and mx2 games-Dominance principle-Solving mxn game -using dominance-LPP method.	9	15%			

•	Queuing theory-Elements of a queuing system-Kendall's					
	notation-Operating characteristics-Poisson process-					
	Exponential distribution-mean and variance-Birth and death	11	20%			
\mathbf{V}	process.					
	Queuing models based on Poisson process-Single server models					
	with finite and infinite capacity-Multi server models with finite					
	and infinite capacity.					
X	SECOND INTERNAL EXAMINATION					
A	Simulation-Methodology of Simulation-Simulation models-					
	Event type simulation-Generation of Random numbers.					
VI	Multiplication congruence algorithm-Inverse transformation	10	20%			
100	method-Monte-Carlo simulation-Simulation of a queuing					
	system.					
	END SEMESTER EXAM					
	QUESTION PAPER PATTERN					

There will be two parts in the Question paper - Part A and Part B.

Part A will have 8 short answer questions of 3 marks each (8 X 3 M = 24 M). There will be no choice questions.

Part B will have 6 essay questions one from each module of 6 marks each, with an alternative choice question from the same module (6 x 6M=36M). The maximum number of sub part questions in **Part B** to be limited to 2.

The total marks assigned to questions in Part A (Short answer) and Part B (Essay) together from a single module will not exceed the marks assigned to that module specified in the course plan.